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The Top Quark Mass

 A precision measurement of top
quark mass mt scientifically
important

– Tests consistency of Standard
Model

– Bare quark – first opportunity to
study one directly

– Heaviest fermion, so couples
strongly to Higgs boson

 Not just “another” quark mass
– Heaviest fermion in theory

> Couples to Higgs boson in SM
> mZ, mW, mt and mH are all

related
– At a level of ~0.5 GeV/c2, start to

test other aspects of theory
> Stability of pole mass with

respect to MS-bar mass
> Non-perturbative QCD effects

become important

 In SUSY models,
– Top coupling to lightest Higgs

boson forces it to be below about
140 GeV/c2

– Precision measurement provides
constraints on alternate models

 Presents important experimental
challenges

– Requires us to understand
> Jet energy scales very well
> Effects of underlying event

 Important as a calibration tool for
other searches and measurements

– E.g., Higgs decaying to jets
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Measurement Strategy

 Top quark expected to decay
100% into W+b

– Have all-hadronic and
semileptonic decay modes

– Pair production dominates
> End up with 6 parton final

state
> With additional jets

 Identify the decay products of
top quark pairs

– Select events with
> Charged lepton + neutrino
> 2 jets from 2nd W decay
> 2 more jets from b quarks

– Employ energy-momentum
conservation to infer mt

 Measure every decay mode
– Employ different techniques

to test assumptions
– Work to limit dependence on

MC calculations
– Constrain theoretical

uncertainties
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Tevatron Run II Performance

 Tevatron has run very well!
– Initially a slow start in 2002-03
– Exceeded goals over last three years

> Record luminosity of 3.6x1032 cm-2s-1

– Now accumulating ~2 fb-1/year

 This has led to a change in plans
– Originally Tevatron was to shut down

by Sep 2009
– Now running through Sep 2010 is

certain given recent budget decision
– Discussions underway about running

through Sep 2011
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CDF Detector

 Collider Detector at
Fermilab

– Excellent charged particle
tracking

> Large 1.4 T solenoid for
particle momentum
measurement

– Calorimeters measure jet
energies and missing energy

– Muon detectors outside of
calorimeter

 Trigger & DAQ system
designed to

– Examine each beam crossing
(2.4 MHz rate)

– Select “interesting” events
– Record data at rate of 100 Hz

 B tagging provided by 7-layer silicon
tracking system

– For top quarks, tagging efficiency is ~45%
– Essential tool to reduce backgrounds in mass

analyses
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Top Quark Reconstruction

 Goal is to efficiently identify each
event topology
– Dileptons (~4%)

> 2 leptons (e,µ) PT > 20 GeV/c
> Missing ET > 20 GeV
> 2 or more jets

– PT>20 GeV/c and |η|<2
– Lepton + jets (~30%)

> 1 lepton (e,µ) PT > 20 GeV/c
> Missing ET > 20 GeV
> 2 or more jets

– PT>20 GeV/c and |η|<2
– All Hadronic (~44%)

> 6 or more jets
– PT>15 GeV/c and |η|<2

> Kinematic cuts + neural nets

 Limited also by systematic
uncertainties
– Techniques and selection optimized

to reduce systematics
– Much innovation over last five years

 Using “3rd generation” techniques
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Mass Measurement Techniques

 All techniques based on simple
kinematics

– Heavier the object, the more
energetic the daughters

 Variations in how one correlates
observed final state with mt

– Directly measure using 4-
momentum reconstruction
> Correct for resolution effects

– Employ matrix element approach
> Use “transfer functions” for

detector resolution
– Look at subset of information

> Example, lepton PT

 Many complications
– Cannot reconstruct final state of

6 partons correctly
– Jet energy calibrations
– Background sources

 Example of how well one can do:
– Mass reconstruction in

double-tagged lepton+jet
events
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More on Techniques

 Have to understand effects of
background

– Purity of samples improved
> Using neural network techniques

to estimate
– Data-driven with many cross checks
– Latest measurements use

> Neural net techniques to improve
S/B

> Use event-by-event S/B estimates

 Systematic uncertainties now play
significant role

– Jet energy scales have been largest
experimental challenge

– Theory now becoming single largest
source

 Employing increasingly
sophisticated tools to extract mt

– Neural nets for backgrounds
– Likelihood approaches using

> Expected response functions
(templates)

> Matrix element approaches with
transfer functions to model
detector response

– Combined analyses
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Latest Results in Lepton+Jets

 Current “best” measurement - MTM3
– Standard event selection on 3.2 fb-1

sample
> Observe 459 single tag events and

119 double tags
– Estimates background probability

event-by-event
> Neural network using 10 observables

– Calculate likelihood using
> Matrix element for production &

decay
> Transfer functions to account for

detector effects
> Determine jet energy scale JES

simultaneously
– Fit observed jet and lepton 3-vectors to

mt and JES
> Sum over all possible combinations

of parton-jet assignments
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MTM3 Results

 Systematic effects
– Four dominant contributions

> MC generator
– Compare PYTHIA with

HERWIG

> Residual JES
– light quark to b quark

> Background effects
– Uncertainties from

different sources

> Color reconnection
– Model using different

“tunes” in PYTHIA

 Overall result is:

!  

m
t
=172.1± 0.9(stat) ± 0.7 (JES) ±1.1 (syst) GeV/c2

=172.1±1.6 GeV/c2

CDF Collaboration, CDF Conf. Note 9692 (2009)
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Top Quark Mass in Dileptons

 Dilepton final states have
complication of 2 neutrinos
– Missing ET is sum of

neutrino PT

– Extract mt using matrix
element technique
> Integrate over neutrino

momenta

 Analyze 2.0 fb-1 of data
– Employ neural network to

reduce backgrounds

 Measured mass:

! 

m
t
=171.2 ± 2.7(stat) ± 2.9 (syst) GeV/c

2

=171.2 ± 4.0 GeV/c
2

CDF Collaboration, Phys. Rev. D75, 031105 (2007)



13

Top Quark Mass in All Hadronic
Mode

 Challenges here are QCD + JES
– S/B is about 10-3 after trigger
– All-jet final state

> Jet energy scale calibration
dominates

 Strategy
– Use kinematic cuts + b-tagging

> Require at least 2 tagged
jets

– Neural network to reduce
background (use 13 variables)

 Result is quite robust, given
intrinsic S/B problems

 In 2.9 fb-1 of data, measure:

! 

m
t

=174.8 ±1.7(stat) ±1.6 (JES)

-1.0

+1.2 (syst) GeV/c2

=174.8 ± 2.4 (stat)-1.0

+1.2  (syst) GeV/c2

CDF Collaboration, CDF Conf. Note 9694, (2009)
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Plus Many Other Analyses

 Highlighted the most precise
results in three channels

– Many other analyses completed,
e.g.
> Soft muon tagged l+jets
> Combined template analysis in

l+jets & dileptons
> Lepton PT distribution
> Neutrino weighting technique

with dileptons
> Template technique in all-

hadronic mode
> Lxy and PT of lepton

– Have different backgrounds &
systematics

– Reinforce confidence in overall
results
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Combining Results

 Combined measurement
– Most channels statistically

independent
> In a few cases, have to take

into account overlap in data
sets

– Requires analysis of systematic
uncertainties
> Group into

uncorrelated/correlated sources

 Significant work by D0 and CDF
to ensure common definitions

– Similar to the efforts made at
LEP

– Resulted in joint publications of
combined mt and mW
measurements

 Effects can be represented
through a correlation matrix

– Largest uncertainties in
combined result arise from
> Jet energy scale (which is

formally a statistical
uncertainty in many cases)

– Light quark/b quark jet
response

> Monte Carlo modelling
> Theoretical uncertainties

– Color reconnection
recent “new” effect

D. Wicke and P. Skands,
arXiv:0807.3248V1
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CDF Combined mt Result

 Have combined all CDF measurements
from both Run I and Run II

– Lepton+jets is single most-accurate
result

– However, others add substantially
> Increased statistical power
> Different systematics (to a degree)

– These are now limiting factor in
precision
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Summary

 Top quark mass precisely measured
– Uncertainty now exceed goals
– Most precisely known quark mass

> Uncertainty ~ 0.9% or 1.5 GeV/c2

 Expect uncertainties to improve
with increasing luminosity
– Already have x2 more data to

analyze
> Expect to collect another 5 fb-1

– Its power will depend on continued
efforts to reduce systematic
uncertainties

! 

m
t

=172.6 ± 0.9(stat) ±1.2 (syst) GeV/c2

=172.6 ±1.5 GeV/c2
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Backup Slides
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Combined Mass Results

 CDF and D0 combination
most powerful single
measurement

 Now are becoming
systematics-limited

 Have to push on many
fronts to improve
– Theoretical modelling
– Jet energy systematics
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Combination Inputs
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Implications for SM Higgs

 Including all electroweak
observables
– W boson mass measurements

> LEP 2 and Tevatron
> 80.399 ± 0.025 GeV/c2

– Constrain the Higgs boson
mass
> Formal 95% CL limit

– MH < 163 GeV/c2


